Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2.

نویسندگان

  • Hanna Antushevich
  • Agata Krawczynska
  • Malgorzata Kapica
  • Andrzej Przemyslaw Herman
  • Romuald Zabielski
چکیده

Apelin is a regulatory peptide, identified as an endogenous ligand of the Apelin receptor (APJ). Both the apelin and the APJ were detected in brain, lung, heart, mammary gland, kidney, placenta, adipose tissues and the gastrointestinal tract. Apelin is considered an important regulatory gut peptide with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behaviour. The aim of the present study was to assess the effect of the apelin on mitosis, apoptosis and the expression of DNA repair enzyme (OGG 1/2), and APJ receptor in intestinal cell lines: rat crypt (IEC-6) and human enterocyte model (Caco-2). The cell cultures were incubated with the apelin-12 (10-8 M) for 4, 6, 12, 24 and 48 h and the apoptosis (caspase 3), mitosis (Ki-67) and DNA repair enzyme (OGG1/2) markers were studied by Real-Time qRT-PCR and immunofluorescent methods. The results of Real-Time qRT-PCR and immunocytochemical analysis showed that the levels of mRNAs were inversely related to the expression level of corresponding proteins. Immunofluorescent studies revealed inhibitory effect of apelin-12 on apoptosis, mitosis and the expression of OGG1/2 in the intestinal crypt cell line IEC-6. However, in the enterocyte model Caco-2 cells apelin stimulated apoptosis and mitosis, and reduced OGG1/2 expression. These findings suggest that apelin may be involved in the control of epithelial cell turnover in the gastrointestinal tract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection against Gluten-mediated Tight Junction Injury with a Novel Lignite Extract Supplement

Background: Tight junctions are found in epithelial cells and function as selective gatekeepers to regulate absorption. PT-gliadin is the gluten protein segment that is known to impair the functioning of tight junctions. This study aimed to examine the effects of a lignite extract dietary supplement (RESTORE) on tight junction function in small intestine (IEC-6) and colon (Caco-2) epithelial ce...

متن کامل

Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor.

Although the presence of subepithelial intestinal fibroblasts has been well recognized, the effects of fibroblasts on intestinal epithelial cell (IEC) growth are incompletely understood. In vitro studies were undertaken to evaluate the effects of fibroblasts on the proliferation of model IEC lines. IECs (Caco-2, T84, and IEC-6) were grown alone or in the presence of human intestinal (CCD-18), l...

متن کامل

Effect of Passage Number and Culture Time on the Expression and Activity of Insulin-Degrading Enzyme in Caco-2 Cells

Background: Insulin-degrading enzyme (IDE) is a conserved zinc metallopeptidase. Here, we have evaluated the effect of passage number and culture time on IDE expression and activity in colorectal adenocarcinoma cell line (Caco-2). Methods: Caco-2 cells were cultured with different passage ranges of 5-15, 25-35, 52-63 for 48, 72, and 120 hours. Subsequently, IDE expression and enzyme activity we...

متن کامل

Polyamine depletion arrests growth of IEC-6 and Caco-2 cells by different mechanisms.

The polyamines spermidine and spermine and their precursor, putrescine, are required for the growth and proliferation of eukaryotic cells. This study compares and contrasts growth arrest caused by polyamine depletion in the untransformed IEC-6 cell line with that in the p53-mutated colon cancer Caco-2 cell line. Cells were grown in the presence or absence of alpha-difluoromethylornithine (DFMO)...

متن کامل

Effect of 5-aza-2′-deoxycytidine on p16INK4a, p14ARF, p15INK4b Genes Expression, Cell Viability, and Apoptosis in PLC/PRF5 and MIA Paca-2 Cell Lines

Background: Mammalian cell division is regulated by a complex includes cyclin-dependent kinases (Cdks) and cyclins, Cdk/cyclin complex. The activity of the complex is regulated by Cdk inhibitors (CKIs) compressing CDK4 (INK4) and CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family. Hypermethylation of CKIs has been reported in various cancers. DNA methyltransferase inhibitors (DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Folia histochemica et cytobiologica

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2014